MT 21 - Optimization Techniques

- 1. What is the primary objective of linear programming?
- a) Maximizing profits
- b) Minimizing costs
- c) Optimizing a linear objective function
- d) None of the above

Answer: c) Optimizing a linear objective function

- 2. Which method is commonly used to solve linear programming problems graphically?
- a) Simplex method
- b) Two-phase simplex method
- c) Graphical method
- d) Monte Carlo simulation

Answer: c) Graphical method

- 3. What are the limitations of linear programming?
- a) Only applicable to small-scale problems
- b) Assumes linearity and certainty
- c) Infeasibility to model complex scenarios
- d) All of the above

Answer: b) Assumes linearity and certainty

- 4. In linear programming, what does the Simplex method aim to do?
- a) Maximize the objective function
- b) Minimize the objective function

- c) Find the optimal solution through iteration
- d) None of the above

Answer: c) Find the optimal solution through iteration

- 5. When would you use the Two Phase Simplex Method?
- a) When dealing with nonlinear constraints
- b) When the initial basic feasible solution is not apparent
- c) When the problem has only one decision variable
- d) When the problem has no constraints

Answer: b) When the initial basic feasible solution is not apparent

- 6. What are Markov chains commonly used for?
- a) Modeling systems with memoryless properties
- b) Modeling deterministic systems
- c) Predicting future events with certainty
- d) None of the above

Answer: a) Modeling systems with memoryless properties

- 7. In Markov chains, what are steady-state probabilities?
- a) Probabilities that remain constant over time
- b) Probabilities that change with each iteration
- c) Probabilities of transitioning between states
- d) Probabilities of reaching an absorbing state

Answer: a) Probabilities that remain constant over time

- 8. Monte Carlo Simulation is used for:
- a) Solving linear programming problems

- b) Estimating probabilities through repeated random sampling
- c) Analyzing deterministic systems
- d) None of the above

Answer: b) Estimating probabilities through repeated random sampling

- 9. Which of the following is an application area of Markov chains?
- a) Weather forecasting
- b) Cryptography
- c) Sorting algorithms
- d) Data compression

Answer: a) Weather forecasting

- 10. In the processing of n jobs through m machines, what is the objective?
- a) Maximizing the number of machines used
- b) Minimizing the processing time
- c) Balancing the workload across machines
- d) None of the above

Answer: b) Minimizing the processing time

- 11. What is the sequential model primarily concerned with?
- a) Optimizing production processes
- b) Scheduling tasks sequentially
- c) Analyzing decision trees
- d) None of the above

Answer: b) Scheduling tasks sequentially

12. Which technique is commonly used to solve processing n jobs through m machines problems?

- a) Simplex method
- b) Monte Carlo simulation
- c) Dynamic programming
- d) Markov chains

Answer: c) Dynamic programming

13. What is the critical path in a PERT network?

- a) The path with the most activities
- b) The shortest path in the network
- c) The longest path in the network
- d) The path with zero slack

Answer: c) The longest path in the network

14. What does the Forward Pass Computation in PERT/CPM calculate?

- a) Earliest start and finish times for each activity
- b) Latest start and finish times for each activity
- c) Total float for each activity
- d) Critical path duration

Answer: a) Earliest start and finish times for each activity

15. Which tool is commonly used for project management and incorporates PERT/CPM techniques?

- a) Microsoft Excel
- b) MATLAB

- c) MS Project
- d) Python

Answer: c) MS Project

16. What does a zero-sum game imply?

- a) The sum of payoffs is zero
- b) One player's gain is another player's loss
- c) Players have no strategies
- d) None of the above

Answer: b) One player's gain is another player's loss

17. How are zero-sum games typically represented?

- a) Payoff matrix
- b) Decision tree
- c) Probability distribution
- d) None of the above

Answer: a) Payoff matrix

18. Which strategy might be used to solve zero-sum games with dominance?

- a) Algebraic method
- b) Graphical method
- c) Simulation
- d) All of the above

Answer: a) Algebraic method

19. Decision Tree is a tool used primarily for:

a) Modeling sequential decisions

- b) Modeling simultaneous decisions
- c) Estimating probabilities
- d) None of the above

Answer: a) Modeling sequential decisions

20. What is the primary difference between decision-making under uncertainty and under risk?

- a) The availability of information
- b) The level of ambiguity in outcomes
- c) The presence of probabilities
- d) None of the above

Answer: b) The level of ambiguity in outcomes